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ABSTRACT

We report on progress made in the development of a 'genuinely multi-

dimensional' finite-volume algorithm for problems in inviscid gasdynamics.

The approach entails (a) the reconstruction of flowfield data using a planar

wave pattern in which the strengths and orientations of the component waves

are derived independently of the mesh geometry, and (b) the development

of a flux formula which provides a numerical approximation to the flux at

a finite-volume cell face during the passage of waves which are in general

oblique to the face. We outline several algorithms, and include the most

recent developments. The results of several numerical test cases are also

included.

I. INTRODUCTION

The standard approach to modeling Euler flowfields in several space di-

mensions is to approximate the multidimensional solution operator by a se-

quence of one-dimensional operators applied along the mesh cooordinate di-

rections. Several methods of this type are highly developed and have been

applied successfully to a vast body of flow problems governed by the Euler

and Navier-Stokes equations. The success of these methods is not, however,

complete. Solution quality can be, in some instances, strongly mesh depen-

dent. This is especially true in discontinuous regions whenever the dominant

wave transition is oblique to the grid. This observation defines an obvious

goal: to develop a grid-independent high-resolution flow solution algorithm.

The research undertaken during the grant period and described in this

report is a preliminary effort in the development of such a scheme. The

approach developed here is based on a local flowfield reconstruction through

a pattern of grid-oblique waves. This approach reduces, in a natural way, the

dependence of the solution on the grid geometry, and represents a significant

step toward the realization of a grid-independent algorithm.

Research which predates the present work to improve wave resolution
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in multidimensional flow includes the work of Davis, _ Roe, 2 Hirsch et M., 3

Powell and Van Leer, 4 and Levy et al. 5 These methods are outlined briefly

below.

In the approach suggested by Davis, the passage of waves at an interface

is modeled in a coordinate system which is locally rotated in such a way that

the flow is nearly one-dimensional in the rotated frame. The input states

for this rotationally-biased algorithm are determined by interpolation in the

vicinity of the cell face. Davis assumes that the primary wave is a shock

with normal aligned with the velocity jump across the interface. An upwind

algorithm is used to compute the waves in the primary direction; terms

which arise in the direction perpendicular to the primary waves are centrally

differenced. Convergence is enhanced (at the expense of wave resolution)

by smoothing the wave orientation information, and also freezing the wave

angles at some stage during the calulations. This method produces solutions

in which oblique shocks are resolved very well. Davis's procedure does not,

however, explicitly account for a single wave of the stream type, because such

a wave would be perpendicular to the specified shock direction.

Levy et al. have used a similar procedure to compute simple two-dimensional

flows, and have explored a variety of choices for the local angle of rotation.

In the continuation of this work, the use of upwinding algorithms in both the

primary and perpendicular wave directions has been explored.

Roe's method entails the reconstruction of gradient data on a triangle.

Because we use a similar reconstruction technique in one of the algorithms

developed here, we defer the description of this method to Section II.

A conservative scheme based on the characteristic form of the Euler equa-

tions has been proposed by Hirsch et al. In this scheme, the underlying

physics is modeled by the characteristic compatibility conditions written for

the choice of wave normals which minimizes the coupling between waves. In

other words, the governing system of equations is written in the form

aw AxOW A OWo--7-+ -gV+ = R,
where W are the characteristic variables, such that R is minimized. Because

the choice of normals determines the specific waves which are computed,
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and becausethis choice depends on the gradients of the flow properties,

this is a genuinely multidimensional approach. Powell and Van Leer have

implemented a conservative algorithm based on this technique.

Other multidimensional algorithms, related to one or more of the methods

described above, have been recently reported by Dadone and Grossman, 6 and

by Kontinos and McRae. ¢

We begin with an outline of local flow reconstruction techniques investi-

gated during the couse of this work. The flux formula is then developed in

Section III, and the application of the most recently developed algorithm to

several planar flow test cases is summarized in Section IV.

II. FLOWFIELD RECONSTRUCTION

In the finite-volume discretization of the flow problem, the physical region

of interest is divided into a number of cells, and the distribution of flow

properties within each cell is then specified according to some convenient

approximation (for instance, that the flow properties are constant, or vary

linearly in the cell). The wave system which governs the evolution of the

flowfield is then constructed by matching the wave transitions to the local

variations in the flow properties. The flowfield then evolves in a manner

which is consistent with the passage of these waves, through the influence of
the waves on the flux at the cell faces.

In this section we describe two methods by which the flowfield is recon-

structed locally. The first is a Riemann method which is a generalization of

the classical grid-aligned wave model.

Two-State Reconstruction

Given any two neighboring states in a flowfield, there are an infinite

number of wave patterns by which the jump in state variables might be

reconstructed. Clearly, additional rules are necessary to make the choice

of waves unique. In the classical wave model, the waves are chosen to be

oriented in a specified (grid-dependent) direction, and this choice, together



with a further restriction on the number of waves, leaves precisely enough
free wave parameters (the wave strengths) to make the wave pattern unique

for a given jump in states. The primary advantage of this technique lies

in its simplicity. There is, as pointed out in the Introduction, a drawback

in this reconstruction technique: High resolution of wave structures can be

expected only if the true wavefront is aligned with the assumed (grid-aligned)

wave direction. The failure of a grid-aligned wave model to properly describe

oblique waves in multidimensional data has been recognized for some time

(see, for example, Ref.2).

The investigation of two-state reconstruction techniques undertaken here,

and reported in Refs. 8 and 9 evolved in parallel with the method of Rum-

sey et al. 1°'11 As an aid to the description of the method, we introduce a

remarkably useful picture of linearized state space, t due to Roe. 1_ An arbi-

trary transition (6u, By, 6p) between states I and r in planar flow is depicted

in Figure 1 in a coordinate system in which the coordinate directions are

chosen to be the pressure and the x- and y-velocity components. The state

I is placed at the origin, and the right state r is at the point (6u, By, _p). The

envelope of possible transitions through acoustic waves with one endstate at

l must lie on a cone with apex at l, because all such transitions satisfy the
relation

lSpl = pa_/(Su) 2 + (By) _. (1)

All transitions across shear waves lie in horizontal planes. Note that den-

sity transitions are not representable on this diagram; thus an entropy wave

cannot be depicted.

A superposition of k elementary wave transitions is used to reconstruct

an arbitrary jump, that is
k

8V = _ gVj.
j=l

The problem is, of course, to determine the number, orientations, and strengths

of the waves to be used. Assuming that the overriding requirement is single

tAn efficient approach to shock capturing relies on the use of a local linearizat.ion

technique which retains the important features of the nonlinear problem. 9,1° In what

follows, we assume a local linearization, so that the state variables are replaced whenever

appropriate by local averages. (For instance, p and a in (1) are average values).
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Figure 1: Elementary wave traditions in state space.

Rankine-Hugoniot wave recognition, any candidate wave model must return

a single wave for this special case.

The type of wave pattern used in Refs. 8 - 11 to construct the state jump

was guided by some measure of the closeness of the union of wave paths to

the overall jump. If the number of waves is restricted to four (as in the grid-

aligned case), the minimum path length choice leads to two acoustics and an

entropy wave for r inside the acoustic cone; for r outside the cone, the waves

are a forward- or a backward-facing acoustic, and a shear. The wave pattern

specified here is shown in Figure 2. Note that the velocity jump across each

acoustic and shear is parallel to the overall velocity jump (and the acoustic

and shear waves are perpendicular to one another). A variety of other rules

have been devised, and some of these are reported in Refs. 9 - 11.

Three-State Reconstruction

As we have seen above, two-state methods provide a local description

of the flowfield based on the jump information between neighboring states.



.4

Figure 2: Minimum pathlength wave transitions.

Our experience with these methods has led to the conclusion that it is un-

reasonable to expect a realistic description of the local wave content of the

flowfield based on this very restricted information (test results followed by

further discussion of these methods appear in the remainder of this report).

A natural extension of the reconstruction technique entails the introduc-

tion of a third data point into the local description of the flow; this provides

sufficient information to approximate flow gradients.$ This technique was

first proposed by Roe. 2

Three-point reconstruction fits naturally into the standard unstructured

mesh discretization, in which the mesh consists of a set of nonoverlapping

triangles. The data is assumed to be stored at the nodes; the data provides

estimates of the flowfield gradients to which are matched the variations in

flow properties described by the chosen wave pattern. There remains, of

SThe reconstruction of gradients makes it impossible to properly fit discontinuities

into the data. This drawback is, however, of little importance, because the two-state

reconstruction procedure is part of a solution algorithm which does not preserve perfectly-
resolved discontinuities.



course, the difficultyof narrowing the choice of the wave pattern to a set

which isunique for given data, and thisissueiscentralto the reconstruction

procedure.

In planar flow,there are eightderivatives,from which eight wave param-

eterscan be found. One might thereforesuppose that the natural choice in

planar flow isa setof fourwaves (each of unknown strength and orientation),

but a study of the planar-wave solutionsof the Euler equations shows that

the minimum number of waves (forarbitrarydata) isin factfive,consisting

of two acoustics,two shear waves, and an entropy wave. This is the choice

we make in the algorithm described in Ref. 13. It is possible, of course, to

specify a wave pattern with more than five waves; Roe and co-workers have

proposed several six-wave models. TM Finally, we observe that a reasonable

choice of waves must also lead to simple algebra, otherwise the efficiency of

the algorithm will suffer.

Because only eight wave parameters can be specified independently, addi-

tional rules are necessary to reduce the number of unknown wave parameters

to precisely eight. The five-wave model proposed in Ref. 13 consists of a

forward- and backward-facing acoustic wave pair with common normal, and

a mutually perpendicular shear wave pair. This choice leads to the wave
normals

n_ = Vp
IVpI'

and

n ell

the first shear wave angle is

Vp-p/(vp)Vp
IVp-p/(Tp)Vpl;

1
0shear3 -- -- arctan

2 (v. _ _) _ sin20,¢(u, + v_) "

It is possible to derive expressions for the wave strengths directly from the

data on the triangle, but a more robust algorithm results if the triangle data is

now reconstructed by an edge-by-edge procedure, in which the wave patterns

between pairs of states consist of waves with the above-specified orientations,
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but with strengths found from the edge state jump. The expressions for the

wave strengths c_ in terms of the state transition 6V along an edge are

and

where

1

= [@+ $u. n":],

a_ = 6p- P 6p,

a,h_ -" --n d_ • _U', _h2 = n'hl " ¢5U_,

cSu' = 6u - pa (a_ - o_2) n":

This edgewise procedure leads to an inconsistency, because the average

states on the edges differ from the triangle-averaged state. This issue remains
unresolved.

III. FLUX FORMULA

In this section, we give an account of the development of formulas to

predict the numerical flux function. We begin with the flux function used in

conjuction with the two-state reconstruction described earlier in this report.

Figure 3 depicts adjacent cells in the mesh; the flux is to be estimated

at the common face. Suppose the wave pattern consists of mutually perpen-

dicular waves, and we denote the orthogonal wave-aligned directions by the

unit vectors in and it. The upwind flux formula used in Refs. 8 - 11 can be

interpreted as the flux estimate which arises from the assumption that the

flux components in the wave aligned directions are

F" 1 [Ft, , + F_ - E [6F:I]=2

where the sum is over waves with normal in, and

F t I[Ftt+Ft.-__.I_SFt ]='_



Figure 3: Figure for the derivation of the flux formula (2)

where the sum is over waves with normal it. The face-normal flux is then

1 [F/+ F/- E I'SF ,i,o•"'[] (2)F ! = Ftit. n ! + Fni_, • n ! = _

where n ! is the cell face normal. This flux formula has also been applied in

algorithms in which the two-state reconstruction includes waves of arbitrary

relative orientation (for which the proper interpretation of the formula is not

clear). As we shown in Section IV below, the use of this formula leads, in

general, to highly nonmonotonic solutions.

A different flux formula, which has a clearer interpretation for waves of

arbitrary orientation, has been developed for use in conjuction with the three-
state reconstruction describe in Section III. The details of the development

we outline below are presented in Ref. 13. The reader is also referred to

Roe's original paper. 2

We assume that the finite-volume cells are built from the triangle-centroid

mesh dual shown in Figure 4. Then the cell faces are the edges of the polyg-

onal cells, and we wish to estimate the flux on each face. Because the wave
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mesh dual

Figure 4: Finite-volume cells.

reconstruction is applied to the data on a triangle, we divide each cell face

into the two pieces that are contained in adjacent triangles. The flux for-

mula is then used to estimate the flux on partial-fazes (which is equivalent

to writing the flux on the full face as a weighted arithmetic average of the

flux predicted on the two partial-fazes).

Suppose each finite volume cell in Figure 4 is assembled from a set of

triangles which are constructed by connecting the vertices of the polygonal

cell to the center node. Such a triangle is shown in Figure 5. We now imagine

a single plane wavefront passing through this triangle. Let the state ahead

of the wave be denoted by the subscript r, and that behind the wave by I.

The contour integral of the normal component of the flux tensor around the

cell gives the simple result

0

\--I

(3)

where A is the area of the triangle, s_ is the length of the wavefront inside

the triangle, 6F _ is the normal flux jump across the wave, and t_ is the

area-averaged value of the vector of conserved variables (mass, momentum,

11



Figure 5: Wavefront passing through a tdangular cell fragment

and energy per unit area). The result (3) is used below in the development

of the numerical flux function.

Figure 6 depicts two triangular fragments of neighboring cells I and r.

For algorithmic simplicity, we wish to account for the entire effect of the

waves which arise between the states l and r through the numerical flux at

the common face. This would obviate the need to explicitly calculate the

effect of these waves on the remaining faces of the triangular segments. The

manner in which this can be accomplished is to set the flux at the common

face, normal to the face, to

F = F_ + 6F _8_-, (4)
s!

t is an estimate of the length of the wave segment contained in thewhere s w

left triangle, and s! is the face length. We note that it is equally valid to
write

F=F,.-_F '_--_, (5)
s!

and it is perhaps most reasonable to use the average of (4) and (5). Finally,

for simplicity, we assume that ratio of the length of the wave segment to the

cell face length is zero or unity, depending on the direction of motion of the

12



cellface /

Figure 6: Neighboring triangular cell fragments

wave. This yields the flux formula

F = _ F, + F,- _ sgn()_k)$F_' , (6)
k---1

where £k is the wave speed of the k-th wave, for a system of five waves.

It is interesting to note that the only difference in the flux formula used

in Refs. 8 - 11, which was derived earlier in this section, and can be written
in the form

1[ _ l I]F = _ F_ + F,- _] sgn(£k)6F_ n_'-n I ,
k=l

and equation (6) is the dot product term.

IV. TEST CASES

The methods described in this report have been tested on a array of

simple two-dimensional flow problems. We show results for three channel

flows, which cover the Mach number range from subsonic to high-supersonic.

Simple forward time integration with local time stepping is used in every
case we show below.
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Figure 7: Channel geometry and grid.

The two-state reconstruction algorithm tested here on the supersonic

channel flow differs slightly from earlier implementations: the method is

applied here on an unstructured grid; the calculations presented in Refs. 8

and 11 we done on a structured grid. We also note that the finite-volume

discretization is, for this algorithm, cell-centered.

Supersonic Channel Flow

This is the problem of Levy et al. s We present the geometry of the channel

and a uniform 1074 node grid in Figure 7. The ramp angle on the lower

wall is 15 °. The Mach number contours shown in Figure 8 for an inflow

Mach number of 2 show the solution obtained using the minimum pathlength

two-state reconstruction and the flux formula (2). As this figure shows,

although the wave resolution is good, the solution is clearly nonmonotonic.

Furthermore, the maximum density residual diminshes only one order of

magnitude over 1000 timesteps.

The same case was computed using the three-state reconstruction algo-

rithm, together with the flux formula (6). Pressure and Mach number con-

tours in Figures 9 and 10. These figure show that the variations in the flow

properties are very nearly monotonic, and the resolution of the shockwaves

is very high (2-3 triangles). The density residual history, shown in Figure

11, indicates better than two order-of-magnitude convergence in about 1000

14
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Figure 11: Density residual history for the supersonic channel flow problem

steps.

Double Ramp

The monotonicity of the algorithm of Ref. 13 is tested far more severely

in this flowfield, which is a Mach 4 flow over a 20-35 ° double ramp. The

uniform 1052 node grid we used is shown in Figure 12. Pressure and Mach

number contours are plotted in Figures 13 and 14. The Mach number

contours in Figure 14 clearly indicate the presence of the slip surface. These

contour plots also show nearly-monotone variations in the flow properties.

The density residual history in Figure 15 shows a two order-of-magnitude

reduction in 500 timesteps.

Subsonic Channel Flow

The last test case we show here is a fully subsonic flow in the channel

shown in Figure 16. The bump on the lower wall is a 10% circular arc, and
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Figure 16: Channel geometry and grid
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there are 29 nodes on the bump. The stretched grid contains a total of 1108

nodes. Pressure and Mach number contours for an inflow Mach number of

0.6 are shown in Figures 17 and 18. The more serious convergence problem

alluded to earlier is apparent from the density residual history plot in Figure
19.

Discussion

It is immediately clear from these examples that the genuinely multidi-

mensional methodology leads to very high wave resolution. Unfortunately,
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this comes at the cost of monotonicity and convergence. This is especially

true of results using the two-state reconstruction method together with the

flux formula (2). (A detailed study of the monotonicity behaviour of this

family of methods is presented by Rumsey et al. 11)

There is a vast improvement in the quality of the solution when a three-

state reconstruction is used with the new flux formula (6), but the solution

still fails to be strictly monotonic, and convergence is not enhanced suffi-

ciently. The lack of monotonicity and convergence is the most apparent in

subsonic flow, perhaps because of the omnidirectional nature of propaga-

tion of acoustic signals. The wave model is designed to identify dominant

waves in the data, and an added level of sophistication may be necessary to

reconstruct data in which there are no strongly-preferred directions.

V. CONCLUDING REMARKS

Two major issues that have been raised repeatedly in the development

of genuinely multidimensional schemes have yet to be resolved satisfactorily.

The first of these is the nonmonotone behavior of solutions, and the second

is the failure of the solution to converge to steady state. The developments

described in this report address both of these issues, but it is clear that much

remains to be done before methods of this type become viable replacements

for classical grid-aligned schemes. On the other hand, genuinely multidimen-

sional algorithms (both the finite-volume schemes discussed here, and the

multidimensional fluctuation distribution algorithms proposed by Roe and

co-workers) do show the potential to dramatically improve wave resolution,

and at very little cost.
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